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Abstract: Transition metal catalyzed decomposition of diazoester 4b results in the
formation of furo[3,4-b]indol 5. This intermediate is trapped intramolecularly in situ
to give 6. Furo[3,4-b]indoles of type 10 can be prepared similarly, but intramolecular
Diels-Alder reactions seem to be prevented for sterical reasons. Some quantum che-
mical calculations (AM1, PM3, ab initio, density functional studies) concerning the
geometry and different reactivity of benzo[c]furans and furo[3,4-d]indoles are repor-
ted. The results are in agreement with observations.

Introduction

Benzo[c]furans (isobenzofurans) constitute a unique class of compounds inasmuch as these he-
terocycles may undergo cycloaddition reactions even with unactivated alkenes and alkynes to
form complex polycyclic systems which are difficult to obtain by other synthetic strategies?=>.
The extension of this methodology to thieno{2,3-c|furans® and furo[3,4- d]isoxazoles” was straight-
forward. In this paper the generation and reaction of furo[3,4-b]indoles is reported®.

Preparative and Computational Results

Treatment of anhydride 1° with methanol results in a regioselective ring opening!® giving 2%
which on reaction with N-hydroxypyridone/DCC yields the activated ester 3'*. This compound
can be transformed quite easily to 4a'*!3, Diazo group transfer by the Regitz methodology'*
yields 4b!5. As was shown by Hamaguchi and Ibata'® diazo esters of this type are versatile star-
ting materials for the generation of c-annulated furans. Treatment of 4b with Cu(acacFe),!”
results in the formation of 6'8. Obviously in the first step a carbene (carbenoid)!? is generated
which after an intramolecular reaction with a carbonyl group yields a furo[3,4-b]indole (5).
An intramolecular Diels-Alder reaction?, subsequent ring opening of the resulting 1,4-oxido
adduct?! and elimination of water results in the observed product. The deprotection of the
carbonyl group was accomplished with 2N HCl/MeOH giving the ketone 722

Interestingly enough, analogous reactions with diazoesters 8c and 8e did not result in the for-
mation of the corresponding cycloadducts. This was demonstrated as follows. Regioselective
saponification of 2b?* with KOH/MeOH yields monoester 8a?!. The esterification to 8b was
accomplished with O-propenylurea using the methodology of Vowinkel?®?%. Diazo group trans-
fer yields 8¢?” which on decomposition with Cu(acacFs), results - besides other products?® - in
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the formation of a small amount of the cyclopropane derivative 9a%. Similarly the esterification
of 8a with O-butenylurea yields 8d* which after diazo group transfer (to 8e)3! and subsequent
decomposition with Cu(acacFs), - again besides a number of other products?® - gives 9b32.
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Decomposition of 8c in the presence of N-phenylmaleimide results in the formation of 1133
in 62% yield (from 8b). This experiment demonstrates that furo[3,4-bindoles of type 10 are
indeed formed, but obviously intramolecular cycloaddition reactions are prevented. Model cal-
culations reveal that a prerequisite for this type of reaction seems to be a planar arrangement
of the carbonyl group and the indole ring. According to these calculations such an arrangement
seems to be difficult to achieve.

Generally speaking furo[3,4-b]indoles are less reactive than the corresponding benzo|[c)furans?.
This observation can be rationalized quite easily by thermochemical arguments. Using quan-
tum chemical methods (AM1, PM33*3%; gb initio methods (RHF/6-31G*, MP2/6-31G*//6-
31G*)38 density functional methods (BLYP/6-31G*)*'~*?) the exothermicity of the model
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reactions (1)-(4) are calculated. These data (Table 1) show that - irrespective of the computa-
tional methods - (1) and (3) are less exothermic than (2) and (4), resp. Similar calculations in
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other series (furo{3,4-d]isoxazoles)** point into the same direction.

Table 1: Calculated Reaction Enthalpies (AAH/) and Reaction Energies (AE) for (1) and (2)

(Semiempirical and ab initio Values, in kcal/mol)

method AAH, (1) (AEQ)) AAH,(2)(AE(2)) AAAH(AAEY)
AM1I 99.2 34.8 12.6
PM3 92.0 32.5 10.5
6-31G" 92.4 36.9 14.5
MP2/6-31G*//6-31G* 33.5 44.3 10.8
BLYP/6-31G~ 12.1 21.5 9.3

“AAH;(1) = AH;(14) — (AH/(12) + AH,(13))(semiempirical values)
*AE(1) = E(14) — (E(12) + E(13))(ab initio and DFT values)
SAAAH = AAH;(2) - AAH;(1); AAE = AE(2) - AE(1)

Table 2: Calculated Reaction Enthalpies (AAH;) and Reaction Energies (AE) for (3) and (4)

(Semiempirical and ab initio Values, in kcal/mol)

method AAH;(3°(AE(3) AAH,(4)(AE@)) AAAH(AAE®)
AM1 15.7 28.9 13.2
PM3 17.6 28.3 10.7
6-31G* 19.1 37.2 18.1
MP2/6-31G"//6-31G* 29.1 42.7 13.6
BLYP/6-31G* 27.6 15.3 12.3

“AAH;(3) = AH;(18) — (AH;(12) + AH,(17))(semiempirical values)
SAE(3) = E(18) — (E(12) 4+ E(17))(ab initio and DFT values)
SAAAH = AAH (4) = AAH(3); AAE = AE(4) — AE(3)

Although a considerable amount of reliable DFT studies - even for molecules with unusual
bonds*® - are available!®*! the detailed structures of 12 and 15 are not known with certainty.
In Table 3 some geometrical data for these compounds are presented. The values for 15 are in
sufficient agreement with ab initio data on the RHF/4-31g* level®6, This again underlines the
validity of this method for computational studies in the field of organic molecules.
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Table 3: Calculated Bond Lengths for 12 and 15 (DFT Results?, in A)
ws; K>
S T 3 4 3
12 " 15

bond | length || bond | length || bond | length

1-8b | 1.379 || 4a-5 | 1.404 || 1-7a | 1.387
1-2 1.381 3-6 1.407 1-2 | 1.376
2-3 1.397 6-7 1.412 || 3a-7a | 1.469

3-3a | 1.373 7-8 1.406 || 3a-4 | 1.434

3a-8b | 1.453 || 8-8a | 1.406 4-5 | 1.382

da-4 | 1.396 || 4a-8a | 1.439 5-6 | 1.443

4-4a | 1.407 || 8a-8b | 1.458

sBLY P/6—31G*//6 - 31G*
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NMR (300 MHz, CDCl3): § = 3.72 ppm (s, 3H, NCH3), 3.92 (s, 3H, CO,CHj), 4.43 (s, 2H,
CH,CO,R), 4.63 (ddd, J, = 1.4 Hz, J, = 1.4 Hz, J; = 5.7 Hz, 1H, H-13), 5.22 (tdd, J, = 1.4
Hz, J, = 1.4 Hz, J5 = 10.4 Hz, 1H, H-15a), 5.29 (tdd, J, = 1.4 Hz, J, = 1.4 Hz, J; = 17.2
Hz, 1H, H-15b), 5.90 (tdd, J; = 5.7 Hz, J; = 10.4 Hz, J; = 17.2 Hz, 1H, H-14), 7.22-7.35 (m,
3H, H-6, H-7, H-8), 8.13 (ddd, J; = 0.8 Hz, J, = 2.6 Hz, J; = 6.7 Hz, 1H, H-5); *C NMR (75
MHz, CDCl3): & = 29.89 ppm (q, NCHs), 31.55 (t, C-10), 50.75 (q, CO,CHj), 65.78 (t, C-13),
105.37 (s, C-3), 109.41 (d, C-8), 118.37 (t, C-15), 121.80 (d, C-5)*, 121.88 (d, C-6)", 122.68 (d,
C-7)*, 126.16 (s, C-4), 131.78 (d, C-14), 136.79 (s, C-9), 140.02 (s, C-2), 165.94 (s, CO,CH,),
168.75 (s, C-11); C16H;7NOy4: Calc. 287.1158 Found 287.1156 (MS).

97. 8¢: IR (KBr): 7 = 2946 cm™!, 2123 (CNy), 1705, 1694 , 1537; UV(CHZCN): Amas (lg €)= 212
nm (4.290), 238 (4.217), 295 (3.900), 385 (2.346); 'H NMR (300 MHz, CDCly): é = 3.73 ppm
(s, 3H, NCH,), 3.97 (s, 3H, CO,CH,), 4.74-4.76 (br m, 2H, H-13), 5.27-5.37 (br m, 2H, H-15),
5.95 (br m, 1H, H-14), 7.26-7.42 (m, 3H, H-6, H-7, H-8), 8.17-8.20 (m, 1H, H-5); 3C NMR (75
MHz, CDCl;): § = 31.21 ppm (q, NCH3), 51.14 (q, CO:CH3;), 56.47 (br s, CN,, C-10), 65.91
(t, C-13), 106.04 (s, C-3), 109.88 (d, C-8), 118.58 (t, C-15), 122.21 (d, C-7)", 122.48 (d, C-6)",
123.60 (d, C-5)°, 125.98 (s, C-4), 130.46 (s, C-9), 131.90 (d, C-14), 137.78 (s, C-2), 164.32 (s,
C‘ll), 164.79 (S, COgCH;;)

28. O.Peters, W.Friedrichsen, unpublished results.

29. 9a: 35% colorless needles with mp 149-150 °C; IR(KBr): & = 3100 cm™?, 2961, 1772, 1686,
1541; UV (CH3CN): Amaz (g €) = 216 nm (4.606), 232 (4.486), 250 (sh, 3.881), 290 (4.199),
299 (sh, 4.077); 'H NMR (300 MHz, CDCL3): & = 1.67 ppm (dd, J; = 4.8 Hz, J, = 7.5 Hz, 1H,
H-3'a), 1.69 (dd, J; = 4.8 Hz, J, = 5.5 Hz, 1H, H-3'b), 2.67 (dddd, J; = 0.6 Hz, J; = 4.7 Hz,
J3 = 5.5 Hz, J4 = 7.5 Hz, 1H, H-4"), 3.93 (s, 3H, NCH,), 3.94 (s, 3H, CO,CH,), 4.38 (dd, J, =
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0.6 Hz, J; = 8.9 Hz, 1H, H-5’b), 4.84 (dd, J, = 4.7 Hz, J; = 8.9 Hz, 1H, H-5"a), 7.26 (ddd, J,
= 1.7 Hz, J; = 6.7 Hz, J; = 7.4 Hz, 1H, H-6), 7.31 (ddd, J, = 1.5 Hz, J; = 6.7 Hz, J; = 7.8
Hz, 1H, H-7), 7.36 (ddd, J, = 0.9 Hz, J; = 1.7 Hz, J; = 7.8 Hz, 1H, H-8), 8.10 (ddd, J; = 0.9
Hz, J, = 1.5 Hz, J3 = 7.4 Hz, 1H, H-5); ¥3C NMR (75 MHz, CDCl3): § = 20.09 ppm (t, C-3’),
24.96 (s, C-2'), 26.80 (d, C-4’), 30.82 (q, NCHa), 50.97 (q, CO,CHs), 68.97 (t, C-5'), 107.32
(s, C-3), 109.67 (d, C-8), 121.95 (d, C-6)", 122.18 (d, C-7), 123.31 (d, C-5)", 125.78 (s, C-4),
136.87 (s, C-9), 138.92 (s, C-2), 165.23 (s, CO,CHs), 174.09 (s, CO;R, C- 1°).

30. 8d: 90% colorless needles with mp 44-48°C; IR (KBr): © = 2950 cm™!, 1722, 1691; UV
(CHyCN): Amaz (Ig €) = 216 nm (4.666), 228 (4.549), 247 (sh, 4.065), 287 (4.220), 297 (sh,
4.081); 'H NMR (300 MHz, CDCl;): § = 2.37 ppm (ddtd, J; = 1.5 Hz, J; = 1.6 Hz, J; = 6.6
Hz, J, = 6.7 Hz, 2H, H-14), 3.72 (s, 3H, NCHs), 3.93 (s, 3H, CO,CH,), 4.18 (t, J = 6.7 Hz,
2H, H-13), 4.41 (s, 2H, H-10), 5.03 (tdd, J; = 1.5 Hz, J, = 1.8 Hz, J; = 10.3 Hz, 1H, H- 16a),
5.05 (tdd, J, = 1.6 Hz, J, = 1.8 Hz, J; = 17.2 Hz, 1H, H-16b), 5.73 (tdd, J, = 6.6 Hz, J, =
10.3 Hz, J3 = 17.2 Hz, 1H, H-15), 7.23-7.36 (m, 3H, H-6, H-7, H-8), 8.10-8.16 (m, 1H, H-5); 3C
NMR (75 MHz, CDCl3): § = 29.85 ppm (q, NCHs), 31.55 (t, C-10), 32.97 (t, C-14), 50.71 (q,
CO,CH,), 64.21 (t, C-13), 105.24 (s, C-3), 109.40 (d, C-8), 117.26 (t, C-16), 121.74 (d, C-6)",
121.82 (d, C-7)7, 122.61 (d, C-5)", 126.16 (s, C-4), 133.68 (d, C-15), 136.75 (s, C-9), 140.16 (s,
C-2), 165.91 (s, CO,CH;), 168.99 (s, C-11).

31. 8e: 91% yellow oil; IR (KBr): & = 2952, 2123, 1688; UV (CH3CN): Ap,z (Ig €) = 212 nm
(4.587), 238 (4.494), 295 (4.192); 'H NMR (300 MHz, CDCl3): § = 2.36-2.54 ppm (br m, 2H,
H-14), 3.73 (s, 3H, NCH3), 3.97 (s, 3H, CO,CH3), 4.24-4.38 (br m, 2H, H- 13), 5.03-5.21 (br m,
9H, H-16), 5.70 (br m, 1H, H-15), 7.25- 7.42 (m, 3H, H-6, H-7, H-8), 8.17-8.20 (m, 1H, H-5);
13C NMR (75 MHz, CDCl;): § = 31.26 ppm (q, NCH3), 33.35 (t, C-14), 51.15 (q, CO,CHa),
56.49 (br s, C-10), 64.40 (t, C-13), 106.04 (s, C-3), 109.91 (d, C-8), 117.51 (¢, C-16), 122.23
(d, C-6)", 122.47 (d, C-7)", 123.61 (d, C-5)°, 126.05 (s, C-4), 133.62 (d, C-15), 135.68 (s, C-9),
137.82 (s, C-2), 164.62 (s, CO,CHa), 164.84 (s, C-11).

32. 9b: 4.2% fine needles with mp 200-202 °C; IR(KBr): & = 3044 cm™!, 2942, 1723, 1687, 1531;
UV (CH3CN): Amas (lg €) = 217 nm (4.686), 230 (4.475), 250 (sh, 3.927), 290 (4.189), 297 (sh,
4.097); 'H NMR (300 MHz, CDCl;): § = 1.46 ppm (dd, J, = 5.5 Hz, J, = 8.5 Hz, 1H, H-4’a),
2.10 (dddd, J, = 1.5 Hz, J; = 2.3 Hz, J3 = 3.6 Hz, J, = 14.0 Hz, 1H, H-6’b), 2.16 (dd, 4, =
5.5 Hz, J; = 5.9 Hz, 1H, H-4'b), 2.15-2.27 (m, 1H, H-5'), 2.84 (dddd, J, = 2.8 Hz, J; = 6.1 Hz,
J3 = 13.3 Hz, J, = 14.0 Hz, 1H, H-6'a), 3.83 (s, 3H, NCH,), 3.93 (s, 3H, CO,CHj), 4.27 (ddd,
J; = 3.6 Hz, J, = 11.9 Hz, J; = 13.3 Hz, 1H, H-7'b), 4.46 (dddd, J; = 1.4 Hz, J; = 1.5 Hz, J3
= 6.1 Hz, J, = 11.9 Hz, 1H, H-7"a), 7.21-7.35 (m, 3H, H-6, H-7, H-8), 8.09-8.12 (m, 1H, H-5);
13C NMR (75 MHz, CDCly): § = 17.22 ppm (t, C-4’), 20.76 (t, C-6"),22.43 (s, C-3'), 25.42 (d,
C-5’), 30.84 (q, NCHj;), 50.96 (q, CO,CHj3), 65.37 (t, C-7’), 105.78 (s, C-3), 109.57 (d, C-8),
122.02 (d, C-7)7, 122.10 (d, C-6)", 123.04 (d, C-5)", 125.93 (s, C-4), 136.62 (s, C-9), 144.33 (s,
C-2), 165.35 (s, CO;CHs), 169.62 (s, CO;R, C-2'); C17H,7NO4: Calc. 299.1158 Found 287.1157
(MS).

33. 11: Yellow prisms with mp 176-180°C; IR (KBr): » = 3049, 1755, 1728, 1712, 1620; UV
(CH3CN): Amas (Ig €) = 201 nm (4.551), 214 (4.452), 250 (sh, 4.385), 259 (4.471), 288 (4.788),
380 (3.893); 'H NMR (90 MHz, CDCl;): 6 = 3.78 ppm (s, 3H, NCHj;), 4.41 (s, 3H, Ar- OCH3),
4.93-5.10 (m, 2H, CO;CH,R), 5.20-5.60 (m, 2H, CH=CH,), 5.90-6.43 (m, 1H, CH=CH,), 7.17-
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7.67 (m, 8H, Ar-H), 8.23-8.43 (m, 1H, Ar-H).
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