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Abstract: Transition metal catalyzed decomposition of diazoester 4b results in the 
formation of furo[3,4-b]indol 5. This intermediate is trapped intramolecularly in situ 
to give 6. Furo[3,4-b]indoles of type 10 can be prepared similarly, but intramolecular 
Diels-Alder reactions seem to be prevented for sterical reasons. Some quantum che-
mical calculations (AMI, PM3, ab initio, density functional studies) concerning the 
geometry and different reactivity of benzo[c]furans and furo[3,4-d]indoles are repor-
ted. The results are in agreement with observations. 

Introduction 

Benzo[c]furans (isobenzofurans) constitute a unique class of compounds inasmuch as these he-
terocycles may undergo cycloaddition reactions even with unactivated alkenes and alkynes to 
form complex polycyclic systems which are difficult to obtain by other synthetic strategies2-5 . 
The extension of this methodology to thieno[2,3-c]furans6 and furo[3,4- d]isoxazoles7 was straight-
forward. In this paper the generation and reaction of furo[3,4-b]indoles is reported8. 

Preparative and Computational Results 

Treatment of anhydride l 9 with methanol results in a regioselective ring opening10 giving 28j 

which on reaction with N-hydroxypyridone/DCC yields the activated ester 3 n . This compound 
can be transformed quite easily to 4a12'13. Diazo group transfer by the Regitz methodology14 

yields 4b15. As was shown by Hamaguchi and Ibata16 diazo esters of this type are versatile star-
ting materials for the generation of c-annulated furans. Treatment of 4b with Cu(acacF6)2

17 

results in the formation of 618. Obviously in the first step a carbene (carbenoid)19 is generated 
which after an intramolecular reaction with a carbonyl group yields a furo[3,4-b]indole (5). 
An intramolecular Diels-Alder reaction20, subsequent ring opening of the resulting 1,4-oxido 
adduct21 and elimination of water results in the observed product. The deprotection of the 
carbonyl group was accomplished with 2N HCl/MeOH giving the ketone 722. 
Interestingly enough, analogous reactions with diazoesters 8c and 8e did not result in the for-
mation of the corresponding cycloadducts. This was demonstrated as follows. Regioselective 
saponification of 2b23 with KOH/MeOH yields monoester 8a24. The esterification to 8b was 
accomplished with O-propenylurea using the methodology of Vowinkel25'26. Diazo group trans-
fer yields 8c27 which on decomposition with Cu(acacF6)2 results - besides other products28 - in 
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the formation of a small amount of the cyclopropane derivative 9 a 2 9 . Similarly the esterification 
of 8 a with O-butenylurea yields 8 d 3 0 which after diazo group transfer (to 8 e ) 3 1 and subsequent 
decomposition with Cu(acacF 6 ) 2 - again besides a number of other products2 8 - gives 9b 3 2 . 
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Decomposition of 8c in the presence of N-phenylmaleimide results in the formation of l l 3 3 

in 62% yield (from 8b). This experiment demonstrates that furo[3,4-b]indoles of type 10 are 
indeed formed, but obviously miramolecular cycloaddition reactions are prevented. Model cal-
culations reveal that a prerequisite for this type of reaction seems to be a planar arrangement 
of the carbonyl group and the indole ring. According to these calculations such an arrangement 
seems to be difficult to achieve. 

Generally speaking furo[3,4-b]indoles are less reactive than the corresponding benzo[c]furans2e. 
This observation can be rationalized quite easily by thermochemical arguments. Using quan-
tum chemical methods (AMI, PM334,35; ab initio methods (RHF/6-31G*, MP2/6-3 lG" / /6 -
31G*)37·38, density functional methods (BLYP/6-31G*)4 1 - 4 3) the exothermicity of the model 
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reactions (1)-(4) are calculated. These data (Table 1) show that - irrespective of the computa-
tional methods - (1) and (3) are less exothermic than (2) and (4), resp. Similar calculations in 
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other series (furo[3,4-d]isoxazoles)44 point into the same direction. 

Table 1: Calculated Reaction Enthalpies (AAHj) and Reaction Energies (ΔΕ) for (1) and (2) 
(Semiempirical and ab initio Values, in kcal/mol) 

method AAHf(l)a(AE{l))b ΔΔ#/(2)(ΔΕ(2)) AAAH(AAEC) 
AMI 22.2 34.8 12.6 
PM3 22.0 32.5 10.5 

6-31G" 22.4 36.9 14.5 
MP2/6-31G*//6-31G* 33.5 44.3 10.8 

BLYP/6-31G* 12.1 21.5 9.3 
aAAHs{ 1) = AHj{ 14) - (AHj( 12) + Aff / (13) ) ( semiempir ica l values) 
6Δ£"(1) = £ ( 1 4 ) - ( £ 7 ( 1 2 ) + £ ( 1 3 ) ) ( α 6 initio and D F T values) 
CAAAH = AAHf(2) - AAHf( 1); AAE = AE(2) - Δ £ ( 1 ) 

Table 2: Calculated Reaction Enthalpies ( A A H f ) and Reaction Energies (ΔΕ) for (3) and (4) 
(Semiempirical and ab initio Values, in kcal/mol) 

method AAHf(3)a(AE(3))b ΔΔ#/(4)(ΔΕ(4)) AAAH(AAEC) 
AMI 15.7 28.9 13.2 
PM3 17.6 28.3 10.7 

6-31G* 19.1 37.2 18.1 
MP2/6-31G7/6-31G* 29.1 42.7 13.6 

BLYP/6-31G* 27.6 15.3 12.3 
aAAHf(Z) = AHf{ 18) - {AHf{12) + AHj(l7))(semiempirical values) 
6 Δ£: (3 ) = £"(18) - (E( 12) + E{17)){ab initio and D F T values) 

°AAAH = AAHf (4) - AAHf(3); AAE = AE{ 4) - Δ £ ( 3 ) 

Although a considerable amount of reliable DFT studies - even for molecules with unusual 
bonds45 - are available40'41 the detailed structures of 12 and 15 are not known with certainty. 
In Table 3 some geometrical data for these compounds are presented. The values for 15 are in 
sufficient agreement with ab initio data on the RHF/4-31g·" level26,46. This again underlines the 
validity of this method for computational studies in the field of organic molecules. 
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Table 3: Calculated Bond Lengths for 12 and 15 (DFT Results", in Ä) 

bond length bond length bond length 
l-8b 1.379 4a-5 1.404 l-7a 1.387 
1-2 1.381 5-6 1.407 1-2 1.376 
2-3 1.397 6-7 1.412 3a-7a 1.469 
3-3a 1.373 7-8 1.406 3a-4 1.434 

3a-8b 1.453 8-8a 1.406 4-5 1.382 
3a-4 1.396 4a-8a 1.439 5-6 1.443 
4-4a 1.407 8a-8b 1.458 

"BLYP/6 - 31G*//6 - 31G* 
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26. 8b: 89% colorless needles with mp 78-80°C; IR(KBr): ν = 2944 cm"1, 1720, 1688, 1543; 
UV(CH3CN): Amax (lg e)= 216 nm (4.607), 229 (sh, 4.438), 250 (sh, 3.976), 287 (4.160); JH 
NMR (300 MHz, CDC13): S = 3.72 ppm (s, 3H, NCH3), 3.92 (s, 3H, C02CH3) , 4.43 (s, 2H, 
CH2C02R), 4.63 (ddd, Jx = 1.4 Hz, J2 = 1.4 Hz, J 3 = 5.7 Hz, 1H, H-13), 5.22 (tdd, Jx = 1.4 
Hz, J2 = 1.4 Hz, J 3 = 10.4 Hz, 1H, H-15a), 5.29 (tdd, Ji = 1.4 Hz, J2 = 1.4 Hz, J 3 = 17.2 
Hz, 1H, H-15b), 5.90 (tdd, J! = 5.7 Hz, J2 = 10.4 Hz, J 3 = 17.2 Hz, 1H, H-14), 7.22-7.35 (m, 
3H, H-6, H-7, H-8), 8.13 (ddd, Jx = 0.8 Hz, J2 = 2.6 Hz, J 3 = 6.7 Hz, 1H, H-5); 13C NMR (75 
MHz, CDC13): δ = 29.89 ppm (q, NCH3), 31.55 (t, C-10), 50.75 (q, C02CH3) , 65.78 (t, C-13), 
105.37 (s, C-3), 109.41 (d, C-8), 118.37 (t, C-15), 121.80 (d, C-5)*, 121.88 (d, C-6)*, 122.68 (d, 
C-7)*, 126.16 (s, C-4), 131.78 (d, C-14), 136.79 (s, C-9), 140.02 (s, C-2), 165.94 (s, C02CH3), 
168.75 (s, C-l l) ; C16H17N04: Calc. 287.1158 Found 287.1156 (MS). 
27. 8c: IR (KBr): ν = 2946 cm"1, 2123 (CN2), 1705, 1694 , 1537; UV(CH3CN): Amar (lg e)= 212 
nm (4.290), 238 (4.217), 295 (3.900), 385 (2.346); *H NMR (300 MHz, CDC13): δ = 3.73 ppm 
(s, 3H, NCH3), 3.97 (s, 3H, C02CH3) , 4.74-4.76 (br m, 2H, H-13), 5.27-5.37 (br m, 2H, H-15), 
5.95 (br m, 1H, H-14), 7.26-7.42 (m, 3H, H-6, H-7, H-8), 8.17-8.20 (m, 1H, H-5); 13C NMR (75 
MHz, CDC13): δ = 31.21 ppm (q, NCH3), 51.14 (q, C02CH3) , 56.47 (br s, CN2, C-10), 65.91 
(t, C-13), 106.04 (s, C-3), 109.88 (d, C-8), 118.58 (t, C-15), 122.21 (d, C-7)*, 122.48 (d, C-6)*, 
123.60 (d, C-5)', 125.98 (s, C-4), 130.46 (s, C-9), 131.90 (d, C-14), 137.78 (s, C-2), 164.32 (s, 
C-l l) , 164.79 (s, C02CH3) . 
28. 0.Peters, W.Friedrichsen, unpublished results. 
29. 9a: 35% colorless needles with mp 149-150 °C; IR(KBr): ν = 3100 cm"1 , 2961, 1772, 1686, 
1541; UV (CH3CN): Amar (lg e) = 216 nm (4.606), 232 (4.486), 250 (sh, 3.881), 290 (4.199), 
299 (sh, 4.077); JH NMR (300 MHz, CDC13): δ = 1.67 ppm (dd, J t = 4.8 Hz, J2 = 7.5 Hz, 1H, 
H-3'a), 1.69 (dd, Jx = 4.8 Hz, J2 = 5.5 Hz, 1H, H-3'b), 2.67 (dddd, Jx = 0.6 Hz, J2 = 4.7 Hz, 
J 3 = 5.5 Hz, J4 = 7.5 Hz, 1H, H-4'), 3.93 (s, 3H, NCH3), 3.94 (s, 3H, C02CH3) , 4.38 (dd, Jx = 
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0.6 Hz, J2 = 8.9 Hz, 1H, H-5'b), 4.84 (dd, J! = 4.7 Hz, J2 = 8.9 Hz, 1H, H-5'a), 7.26 (ddd, Jx 

= 1.7 Hz, h = 6.7 Hz, J 3 = 7.4 Hz, 1H, H-6), 7.31 (ddd, J j = 1.5 Hz, J2 = 6.7 Hz, J 3 = 7.8 
Hz, 1H, H-7), 7.36 (ddd, Jx = 0.9 Hz, J2 = 1.7 Hz, J 3 = 7.8 Hz, 1H, H-8), 8.10 (ddd, Jx = 0.9 
Hz, J2 = 1.5 Hz, J 3 = 7.4 Hz, 1H, H-5); 13C NMR (75 MHz, CDC13): δ = 20.09 ppm (t, C-3'), 
24.96 (s, C-2'), 26.80 (d, C-4'), 30.82 (q, NCH3), 50.97 (q, C0 2CH 3) , 68.97 (t, C-5'), 107.32 
(s, C-3), 109.67 (d, C-8), 121.95 (d, C-6)*, 122.18 (d, C-7)*, 123.31 (d, C-5)*, 125.78 (s, C-4), 
136.87 (s, C-9), 138.92 (s, C-2), 165.23 (s, C02CH3) , 174.09 (s, C0 2 R, C- 1'). 
30. 8d: 90% colorless needles with mp 44-48 °C; IR (KBr): ϊ> = 2950 cm"1 , 1722, 1691; UV 
(CH3CN): AmQI (lg c) = 216 nm (4.666), 228 (4.549), 247 (sh, 4.065), 287 (4.220), 297 (sh, 
4.081); XH NMR (300 MHz, CDC13): δ = 2.37 ppm (ddtd, J! = 1.5 Hz, J2 = 1.6 Hz, J 3 = 6.6 
Hz, J4 = 6.7 Hz, 2H, H-14), 3.72 (s, 3H, NCH3), 3.93 (s, 3H, C02CH3) , 4.18 (t, J = 6.7 Hz, 
2H, H-13), 4.41 (s, 2H, H-10), 5.03 (tdd, J j = 1.5 Hz, J2 = 1.8 Hz, J 3 = 10.3 Hz, 1H, H- 16a), 
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10.3 Hz, J 3 = 17.2 Hz, 1H, H-15), 7.23-7.36 (m, 3H, H-6, H-7, H-8), 8.10-8.16 (m, 1H, H-5); 13C 
NMR (75 MHz, CDC13): δ = 29.85 ppm (q, NCH3), 31.55 (t, C-10), 32.97 (t, C-14), 50.71 (q, 
C02CH3), 64.21 (t, C-13), 105.24 (s, C-3), 109.40 (d, C-8), 117.26 (t, C-16), 121.74 (d, C-6)*, 
121.82 (d, C-7)*, 122.61 (d, C-5)*, 126.16 (s, C-4), 133.68 (d, C-15), 136.75 (s, C-9), 140.16 (s, 
C-2), 165.91 (s, C02CH3) , 168.99 (s, C-l l ) . 
31. 8e: 91% yellow oil; IR (KBr): ν = 2952, 2123, 1688; UV (CH3CN): Amor (lg t) = 212 nm 
(4.587), 238 (4.494), 295 (4.192); *H NMR (300 MHz, CDC13): δ = 2.36-2.54 ppm (br m, 2H, 
H-14), 3.73 (s, 3H, NCH3), 3.97 (s, 3H, C02CH3) , 4.24-4.38 (br m, 2H, H- 13), 5.03-5.21 (br m, 
2H, H-16), 5.70 (br m, 1H, H-15), 7.25- 7.42 (m, 3H, H-6,. H-7, H-8), 8.17-8.20 (m, 1H, H-5); 
13C NMR (75 MHz, CDC13): δ = 31.26 ppm (q, NCH3), 33.35 (t, C-14), 51.15 (q, C02CH3) , 
56.49 (br s, C-10), 64.40 (t, C-13), 106.04 (s, C-3), 109.91 (d, C-8), 117.51 (t, C-16), 122.23 
(d, C-6)*, 122.47 (d, C-7)*, 123.61 (d, C-5)*, 126.05 (s, C-4), 133.62 (d, C-15), 135.68 (s, C-9), 
137.82 (s, C-2), 164.62 (s, C02CH3), 164.84 (s, C-l l ) . 
32. 9b: 4.2% fine needles with mp 200-202 °C; IR(KBr): ν = 3044 cm"1, 2942, 1723, 1687, 1531; 
UV (CH3CN): Amar (lg e) = 217 nm (4.686), 230 (4.475), 250 (sh, 3.927), 290 (4.189), 297 (sh, 
4.097); Ή NMR (300 MHz, CDC13): δ = 1.46 ppm (dd, Jx = 5.5 Hz, J2 = 8.5 Hz, 1H, H-4'a), 
2.10 (dddd, J! = 1.5 Hz, J2 = 2.3 Hz, J 3 = 3.6 Hz, J4 = 14.0 Hz, 1H, H-6'b), 2.16 (dd, = 
5.5 Hz, J2 = 5.9 Hz, 1H, H-4'b), 2.15-2.27 (m, 1H, H-5'), 2.84 (dddd, J! = 2.8 Hz, J2 = 6.1 Hz, 
J 3 = 13.3 Hz, J4 = 14.0 Hz, 1H, H-6'a), 3.83 (s, 3H, NCH3), 3.93 (s, 3H, C02CH3) , 4.27 (ddd, 
Jx = 3.6 Hz, J2 = 11.9 Hz, J 3 = 13.3 Hz, 1H, H-7'b), 4.46 (dddd, Jx ^ 1.4 Hz, J2 = 1.5 Hz, J 3 

= 6.1 Hz, J4 = 11.9 Hz, 1H, H-7'a), 7.21-7.35 (m, 3H, H-6, H-7, H-8), 8.09-8.12 (m, 1H, H-5); 
13C NMR (75 MHz, CDC13): δ = 17.22 ppm (t, C-4'), 20.76 (t, C-6'),22.43 (s, C-3'), 25.42 (d, 
C-5'), 30.84 (q, NCH3), 50.96 (q, C02CH3), 65.37 (t, C-7'), 105.78 (s, C-3), 109.57 (d, C-8), 
122.02 (d, C-7)*, 122.10 (d, C-6)*, 123.04 (d, C-5)*, 125.93 (s, C-4), 136.62 (s, C-9), 144.33 (s, 
C-2), 165.35 (s, C02CH3) , 169.62 (s, C0 2 R, C-2'); Ci7H1 7N04 : Calc. 299.1158 Found 287.1157 
(MS). 
33. 11: Yellow prisms with mp 176-180°C; IR (KBr): ν = 3049, 1755, 1728, 1712, 1620; UV 
(CH3CN): Xmax (lg e) = 201 nm (4.551), 214 (4.452), 250 (sh, 4.385), 259 (4.471), 288 (4.788), 
380 (3.893); JH NMR (90 MHz, CDC13): δ = 3.78 ppm (s, 3H, NCH3), 4.41 (s, 3H, Ar- OCH3), 
4.93-5.10 (m, 2H, C02CH2R), 5.20-5.60 (m, 2H, CH=CH2), 5.90-6.43 (m, 1H, CH=CH2), 7.17-
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